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Abstract—Due to the competitive environment, mobile apps
are usually produced under pressure with lots of complicated
functionality and UI pages. Therefore, it is challenging for
various roles to design, understand, test, and maintain these apps.
The extracted transition graphs for apps such as ATG, WTG,
and STG have a low transition coverage and coarse-grained
granularity, which limits the existing methods of graphical user
interface (GUI) modeling by UI exploration. To solve these
problems, in this paper, we propose SceneDroid, a scene-driven
exploration approach to extracting the GUI scenes dynamically
by integrating a series of novel techniques including smart
exploration, state fuzzing, and indirect launching strategies. We
present the GUI scenes as a scene transition graph (SceneTG) to
model the GUI of apps with high transition coverage and fine-
grained granularity. Compared with the existing GUI modeling
tools, SceneDroid has improved by 168.74% in the coverage of
transition pairs and 162.42% in scene extraction. Apart from
the effectiveness evaluation of SceneDroid, we also illustrate
the future potential of SceneDroid as a fundamental capability
to support app development, reverse engineering, and GUI
regression testing.

Index Terms—Android app, Scene-driven exploration, GUI
exploration, GUI modeling

I. INTRODUCTION

Mobile applications (apps) are indispensable for daily

life [1]. Excessive demand also means that people have

higher requirements for these apps, therefore, they are usually

developed under pressure with more complex functionalities

and UI pages. Every coin has two sides. It is challenging to

design, understand, test, and maintain these apps for different

roles such as product manager, designer, developer, and main-

tainer. To mitigate such a problem and to help understand

these complex apps, app abstract and graphical user interface

(GUI) modeling have been used to realize apps by levering

UI exploration [1]–[6]. Many different approaches to GUI

modeling are raised gradually such as activity transition graph

(ATG) [2], [7], window transition graph (WTG) [3], and screen

transition graph (STG) [4].

Although static and dynamic methods are available for

UI exploration, there are two significant issues that have

not been dealt with yet. (1) it is challenging to construct a

relatively complete ∗TG.1 Due to numerous implementations

and various code styles, the static UI exploration is missing

several transitions [5], [8]. Besides, as some activities are

§ Lingling Fan is the corresponding author (linglingfan@nankai.edu.cn).
1We use ∗TG to present these existing transition graphs.

too complex to fully explore or required complex inputs that

cannot be completed automatically, the coverage may still

be far from acceptable [9]–[11]. (2) The UI pages are more

significant than the ∗TG structure since Android apps are

event-driven with rich UI pages. The UI page is more helpful

and intuitive for users to understand the app.

Under the situation, Chen et al. [1] inspired by the con-

ception of storyboard in the movie industry, proposed Sto-

ryDroid and automatically extracted storyboards for Android

apps, which contains both ATG and rendered UI pages along

with many other useful features such as UI components,

the corresponding layout and logic code, method hierarchy.

Another work StoryDistiller [5] is an extension of it [1], which

enhanced StoryDroid on both the ATG construction and UI

page rendering by adding dynamic UI exploration. In other

words, StoryDistiller is a hybrid solution to extract storyboards

for apps with rich features for app abstract and GUI modeling

with rich visible UI features.

However, StoryDistiller [5] still has shortcomings that ob-

struct understanding and realizing apps: (1) The strategy of

dynamic exploration is only to trigger each interactive UI

component on the rendered activity, missing many deep-level

interactive UI components. The simple strategy inevitably lost

a lot of transition pairs. (2) The extracted ∗TG is coarse-

grained. In addition to the ∗TG, many other GUI “scenes”

can be triggered in activity as shown in Figure 1, leading

to the creation of numerous new UI pages containing new

functionalities. An urgent need for a fine-grained GUI model-

ing solution exists. In fact, addressing the above-mentioned

problems poses the following challenges: C1: Reasonable
UI Granularity. Achieving a reasonable UI granularity is

challenging when seeking to define app UI updates, as we

must preserve key UI information while avoiding the recording

of excessive unnecessary states. An overly coarse granularity

may lead to misjudgments of UI states, adversely affecting

test results, while an excessively fine granularity may generate

a multitude of redundant states, hindering testing efficiency.

Consequently, identifying an appropriate granularity balance

to achieve efficient and accurate UI update recognition is a

key challenge. C2: Launching Activity. During the dynamic

exploration of Android apps, enhancing the ability to launch

activities is a key challenge. Android apps typically comprise

multiple activities, which are the core components of the app,

responsible for displaying various user interfaces and handling

1251

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/23/$31.00 ©2023 IEEE
DOI 10.1109/ASE56229.2023.00179

20
23

 3
8t

h 
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
ut

om
at

ed
 S

of
tw

ar
e 

En
gi

ne
er

in
g 

(A
SE

) |
 9

79
-8

-3
50

3-
29

96
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

AS
E5

62
29

.2
02

3.
00

17
9

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:12:47 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Scene examples triggered by different UI components.

user interactions. However, during the dynamic testing process,

some activities may not be easily triggered, as they might

require specific user input or a particular application state.

Furthermore, certain activities might only be triggered under

specific conditions, rendering the dynamic exploration process

potentially unable to cover all possible activities.

To this end, in this paper, we propose SceneDroid, a

scene-driven exploration and GUI modeling approach, which

leverages a smart exploration to dynamically extract the GUI

scenes.2 Specifically, to address C1, SceneDroid proposes

a scene recognition method that considers the hierarchical

structure of components on the UI page and ignores minor

changes that may lead to layout changes, thus identifying

unique scenes. SceneDroid constructs a finer GUI model based

on scenes, called the Scene Transition Graph (SceneTG). To

address C2, SceneDroid designs an exhaustive exploration

strategy to explore all scenes of an app and interact with

as many interactive UI components as possible. SceneDroid

also introduces state fuzzing techniques to improve scene

transition coverage. Most importantly, SceneDroid designs

an indirect launch strategy that leverages already explored

activities to indirectly launch activities that Inter-Component

Communication (ICC) messages failed to launch.

To demonstrate the effectiveness of SceneDroid, we con-

ducted comprehensive experiments. To evaluate the scene

identification ability of SceneDroid, we run it on 10 self-

developed apps containing different types of interactive UI

components that can trigger new scenes, results show that

SceneDroid can recognize all the preset scenes. We further

compared SceneDroid with 4 state-of-the-art GUI modeling

tools to evaluate the effectiveness on 100 apps. The results

demonstrate that the SceneDroid surpasses other existing tools

in terms of the number of transition pairs (30.25 on aver-

age) and scenes (22.93 on average). With improvements of

168.74% in transition pair coverage and 162.42% in scene

extraction, SceneDroid has significantly enhanced its perfor-

mance. In addition, we also conducted an ablation study

to evaluate the contribution of each strategy employed by

SceneDroid. The result indicates that the Indirect Launching

2In this paper, a scene is defined as the UI page that is triggered by
interactive UI components of the activity A, whose layout is different from
that of A. Such new scenes may be rendered as the current activity A with
new views, a new fragment of A, or a new activity.

strategy is the most contributing one, achieving an average

improvement of 15.59% in terms of activity exploration,

47.02% improvement in scene exploration, and 35.08% im-

provement in transition pair extraction. As SceneDroid serves

as a fundamental tool for app exploration, we also discussed

some applications based on SceneDroid such as regression

testing and UI-based testing.

In summary, we made the following contributions.

• We propose SceneDroid, which is a novel approach

leveraging a set of new techniques to construct the fine-

grained app UI model by defining the scene transition

graph (SceneTG). It can handle both open-source and

closed-source apps.

• SceneDroid proposes a smart exploration algorithm,

which mainly includes three strategies of exhaustive

exploration, state fuzzing, and indirect launch method.

These techniques improve the depth of exploration and

the completeness of the SceneTG.

• Our comprehensive experiments demonstrate the effec-

tiveness of SceneDroid in app exploration and UI mod-

eling compared with existing tools. Moreover, our exper-

iments indicate the indirect launch strategy is the most

contributing one to improving UI modeling.

• This is a fundamental work providing a novel UI model-

ing method for apps, which facilitates future work in the

reverse analysis of app structure, design and guidance

of app development, creation of regression testing tools,

etc. We have released SceneDroid and the experimental

dataset on https://github.com/SceneDroid/SceneDroid.

II. BACKGROUND

A. Android Activity and Fragment

The Activity is the keystone of all Android apps. A

component that contains a user interface primarily for user

interaction. Android Fragment is a type of view that can be

embedded in an activity. An activity can contain more than

one Fragment, and a Fragment can also be reused in multiple

activities, which can adapt to devices with different resolutions

and make screen space utilization more reasonable. Like mini-

activity, Fragment has its own layout and lifecycle [12].

B. Android UI Components

Android provides a large number of UI components [13] that

can be used flexibly to have a grandstand view of the app’s

functionality. For example, TextView is mainly used to display

a text message on the current page. Button is an essential UI

component used to interact with the users. Button objects can

receive user-clickable events. ImageView and ImageButton are

UI components available for displaying icons. In addition to

these common and basic types, other types of UI components

are usually used to enrich the user interface. For example,

Menus are used in most apps to deliver user actions and some

options. The menus are often laid out with important options

that allow changes to be made to the environment variables

and environment data that the apps depend on. The navigation

drawer is one of the most general effects in Material Design
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Fig. 2: An overview of SceneDroid.

which can hide some menu options on the left of the top

app bar. It can display the main navigation items of the app.

AlertDialog and ProgressDialog can pop up dialogs on the

current page.

III. APPROACH

Fig. 2 shows the overview of SceneDroid, which consists

of three main parts: data collection, dynamic analysis, and

scene transition graph (SceneTG) construction. SceneDroid

takes an APK file as input and outputs a visual SceneTG

and other related parsing results such as the corresponding

screenshot for each scene and its corresponding layout files.

The data collection module collects the Inter-Component Com-

munication (ICC) message for activity launching to facilitate

dynamic analysis and the activity transition graph (ATG). The

dynamic analysis module runs the apps by employing the

Smart Exploration algorithm and identifies new scenes. The

SceneTG Construction module takes the outputs of dynamic

analysis to generate the SceneTG, including the screenshot of

each scene and the scene transitions.

A. Data Collection

The goal of data collection is to provide the dynamic

exploration module with as much information as possible,

including the ICC messages for direct activity launching and

ATG for indirect activity launching, so as to improve the

efficiency and effectiveness of dynamic analysis.

1) ICC Message Collection: Android enables activity

launching via console interfaces, with some requiring extra

data. ICC messages, mainly Intent objects with data items,

launch target activities. Generating ICC messages entails iden-

tifying Basic Attributes and Extra Parameters, found in intent-

filters or Java code. Extra Parameters provide necessary spe-

cific data for successful launching. Comprising basic structures

like String, Char, and Boolean, we generate data according to

types to populate the Extra Parameter. The resulting Basic

Attribute and Extra Parameter form ICC messages, used

for activity launching and supplied to the dynamic analysis

module.

2) ATG Collection: Activity Transition Graph (ATG) is

also one of the important features for app exploration, which

states the transition relations between different activities. Lots

of studies have been proposed to construct ATGs [1], [2], [5],

[14], [15], and we use them to collect the initial ATGs for

further analysis.

In this paper, ATG is mainly used to guide SceneDroid in

the following dynamic analysis, especially when the activities

fail to be launched directly with ICC messages, ATG can

facilitate the exploration by providing the precursor activity

for launching. Besides, ATG will be augmented by dynamic

analysis and acts as the basis to construct the SceneTG.

B. Dynamic Analysis

Based on the collected data, the dynamic analysis aims to

exhaustively explore the scenes within the apps and identify

new scenes and scene transitions during exploration.

1) Smart Exploration: Smart exploration focuses on ob-

taining as many different scenes as possible within an app.

To achieve it, three strategies are designed: (1) State fuzzing;

(2) Exhaustive exploration of each activity; and (3) Indirect
launching for failed activities, where different strategies are

used in different stages. Specifically, given an app, SceneDroid

first tries to launch each activity based on the obtained ICC

messages, the target activity is launched successfully, and

the first two strategies are used to explore each activity

exhaustively. If the activity fails to be launched, SceneDroid

will employ the third strategy to indirectly launch activities

first and then continue using the first two strategies to explore

activities. Details are described as follows.

• State fuzzing. Since some activities contain UI compo-

nents that users can interact with, however, would not trigger

a transition to other scenes including EditText, CheckBox,

Switch Button, etc. These kinds of components would not

cause scene transition, however, may change the execution

path of the app and thus potentially explore more states and

scenes. Motivated by this, before operating on the interactive

components that would trigger new scenes (e.g., Button,

ImageButton, MenuButton), we proposed to employ the state

fuzzing strategy first.

Specifically, we consider employing fuzzing on 3 types of

such non-transitive UI components: EditText, CheckBox, and

Switch Button. For EditText, since some apps require user

input to proceed to the next step, such as adding new items

or searching the interface, we need to determine the format

or some specific inputs that the component requires users to

enter. To achieve it, we first dump the Component Tree (i.e.,

UI layout) of the current activity, and extract the attributes of
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EditText, such as className, resource-id, and bounds. Since

the dynamically obtained layout does not contain information

about the required type of user input in terms of EditText, we

use the extracted attributes to match the component declared in

the source layout files, and obtain the required type of string

(declared in inputType). We have summarized text, number,

phone, date, time, and EmailAddress as common inputType.

According to different input types, SceneDroid will randomly

generate a correctly formatted string and fill it into the specific

EditText. For CheckBox and Switch Button, we can directly

identify them by the component type in the layout file. These

two kinds of components have two states, checked or not

checked (open or close, respectively). We can set them easily

by clicking them.

When there are multiple types of the aforementioned non-

transitive UI components on a single activity, to explore

potential new scenes, we go through all the possible com-

binations to form an initial state for the next strategy (i.e.,

exhaustive exploration). For example, if an activity contains

all these 3 types, i.e., EditText has two values (“fill in” or

“blank”), similarly, CheckBox has values of “checked” or

“not checked”, and Switch Button has values of “open” or

“close”. SceneDroid will consider all the combinations of them

and finally generate 23 = 8 initial activity states for further

exploration.

• Exhaustive exploration. From a high level, SceneDroid

employs a breadth-first strategy at the Activity level, while

exploring scenes on a specific activity, SceneDroid uses a

depth-first strategy, aiming to explore as many scenes within

the activity. Therefore, based on each generated initial ac-

tivity, SceneDroid extracts all the actionable components ac-

cording to the attribute “clickable=true” of each component

in the dumped layout file, such as Button, ImageButton,

CheckBox, ImageView, and RadioGroup. It combines these

actionable components into an exploration queue and takes

one component at a time from the queue to interact with.

When a new scene associated with the current activity is

identified, SceneDroid will record its layout file, screenshots,

and experienced components. Besides, SceneDroid iteratively

performs this exploration process on the scene and records the

scene transition relation as scene1
e,c→ scene2 where e and c

represent the event and component triggering this transition,

respectively. If it does not reach the new scene or reaches a

visited scene, it returns to the previous scene and interacts

with the next component. In addition, during exploration, the

current activity A may transit to a new activity B by operating

on specific components (i.e., activity transition), SceneDroid

will rollback to A and continue exploring other scenes within

A. Such activity transitions (i.e., A
e,c→ B) are also recorded

to augment the static ATG and are further used to help

exploration and SceneTG construction.

• Indirect launching for failure activities. Due to the incon-

sistency of activity declaration between the app implementa-

tion and the AndroidManifest.xml file or incorrect static ICC

messages, some activities may not be launched successfully

with ICC messages. SceneDroid will find the upstream caller

(a) parent caller launching case

(b) grandparent caller launching case

Fig. 3: Cases of indirect launching for failed activities.

activity as a bridge to indirectly launch the target activity, by

utilizing the SceneTG that has been constructed so far. For

example, in Fig. 3(a), when Callee Act. failed to be launched

with ICC messages, SceneDroid will find the caller of it from

ATG, i.e., Caller Act a and Caller Act b, both of which

can be used to indirect launch Callee Act. Note that ATG is

dynamically augmented and updated during exploration, here,

we use the latest ATG to ensure the successful launch of the

target activity. Specifically, if an activity actdes failed to be

directly launched with ICC messages, SceneDroid will traverse

the ATG and find the caller activity of actdes, i.e., actsrc,

where actsrc → actdes. After that, we will try to launch

actsrc with ICC messages, if it is successfully launched, we

then use the event (i.e., action) that triggers such an activity

transition and operate on it to launch actdes. To extract the

events triggering the specific transition, we use the maintained

ATG which contains the transition relation between different

activities together with the events and components that trigger

such relation, i.e., actA
e,c→ actB .

However, there may be cases that the direct caller activity

actsrc cannot be launched, either. Therefore, we obtain a

list of caller activities as the candidates to launch actdes.

For example, in Fig. 3(a), the direct callers of the failed

activity (i.e., Caller Act a and Caller Act b) both failed to be

launched, we thus iteratively find the caller of the failed ones

and finally launched Callee Act. via launching Caller Act c.

Once the target activity (actdes) is directly launched by one of

the caller activities, we stop this process and employ the two

strategies above (i.e., state fuzzing and exhaustive exploration)

to explore this activity and the associated scenes. If all the

candidate caller activities fail to launch actdes indirectly, we

temporarily move it to the end of the exploration queue and

continue exploring other activities. For actdes, we update ATG

and launch it iteratively by traversing it.

Algorithm 1 depicts the whole process of smart dynamic

exploration, which employs the three strategies alternatively.

The input is all the activities with ICC messages for launching
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Algorithm 1: Smart Dynamic Analysis

Input: actall: All activities with ICC messages in the

app; ATG: Activity transition graph.

Output: S: All scenes explored within the app

1 S ← ∅

2 foreach act, icc ∈ actall do
3 if Success(act, icc) then
4 ExploreAct(act)

5 else
// Failed to launch act.

6 actcaller = IndirectLaunch(act, ATG)

7 if actcaller �= Null then
8 ExploreAct(act)

9 else
// No such a caller act that can launch act,
then act is added to the queue for a second

launch

10 actall ← actall ∪ act

11 Function ExploreAct(act):
12 States ← Fuzzing(act)
13 foreach st ∈ States do
14 S ← ExhaustiveExplore(st)

15 return S

(actall), and SceneDroid outputs the scenes (S) explored by

using the three strategies. Specifically, S is first initialized as

empty and will be gradually augmented during exploration.

For each activity act, we first try to directly launch act by

using the associated ICC message. If act is launched success-

fully, we continue to employ the fuzzing strategy and exhaus-

tive exploration on it by calling the method ExploreAct
(Lines 3-4). In the activity exploration process (Lines 11-

14), we first employ the fuzzing strategy to generate different

initial states (States) for act (Line 12), and for each state,

we start exhaustive exploration (Lines 13-14) and store the

explored scenes in S. However, if act fails to be launched,

we employ the indirect launch strategy to identify the caller

activity of act that can indirectly launch it based on the latest

ATG (Line 6). If there exists such a caller activity actcaller,

we utilize it to transit to act, and continue to employ the

fuzzing strategy and exhaustive exploration on it (Lines 7-

8). Otherwise, act is added to the exploration queue for a

second launch (Lines 9-10), because the ATG is dynamically

updated during exploration, the augmented ATG later may

be able to launch act. Therefore, we employ it to maximize

the possibility of launching each activity. If the ATG is not

augmented after an exploration round, we stop re-launching

the failed activities, and stop the whole process and return S
(Line 15).

2) Scene identification: Since the goal of SceneDroid is

to construct a relatively complete UI model consisting of dif-

ferent types of fine-grained UI states, i.e., scene, we proposed

        (a) UI Page 1 (b) UI Page 2

Fig. 4: Two UI pages in the app Simple Draw Pro.

a scene identification method, aiming to identify the unique

scenes by abstracting and modeling the UI pages in a fine and

suitable manner, so as to avoid keeping exploring duplicated

scenes. The scenes identified by SceneDroid include activity,

fragment, drawer (e.g., Top/Bottom/Side navigation drawer),

dialog, menu, checkbox, spinner, picker, floating action button,

etc., some are shown in Fig. 1.

Specifically, for each explored UI page, we aim to generate

a unique identifier based on the layout dumped dynamically as

an abstraction of the UI page. If the identifiers of two UI pages

are the same, we regard them as the same scene, otherwise,

two scenes are both recorded. To avoid maintaining a massive

number of scenes with subtle changes, and model the UI page

in a fine and proper grained, we consider abstracting a UI page

based on the hierarchy of components on it, the unique ID of

each component (i.e., resource-id in the layout file), the type

of the components (i.e., class), and the package it belongs

to (package). These attributes preserve the number and the

type of components, as well as their hierarchy, meanwhile

omitting the subtle changes (such as the text change and color

change) which would not cause layout changes but may lead

the exploration to a dead end. For example, in Fig. 4, this is

a simple drawing app that produces several UI changes when

the user selects different brush colors. Since no matter how the

values of these UIs change, it is just about the color selection

with different values and would not cause an impact on the

structure, we thus consider them as the same scene.

In detail, for each UI page, we first dump the layout file

which contains all the components and their attributes (e.g.,

resource-id, text, class, package, clickable), and each node

represents a component. We then record the hierarchy of all

the components and start a Breadth-First traversal to obtain

the component sequence as a list. Note that, since SceneDroid

dumps the layout structure directly from the UI page, which

may introduce the UI of other packages, such as the UI of

the status bar or the UI of the input method when it pops up.

The UI with these non-target packages will interfere with the

judgment of the current UI page, but directly ignoring them

may lead to missing new scenes. Therefore, we decided to

discard the non-target package UI in SceneDroid, and only
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Navigation Drawer

SettingsActivity

Dialog with 
EditText

Dialog with 
Option Item

...

...

......

...

NavigationDrawerActivity

Home Fragment

Menu

Gallery Fragment Slideshow Fragment Fragment 2

Fig. 5: Example of a SceneTG constructed by SceneDroid.

considered the nodes that belong to this app by matching

the package names. For each component in this sequence, we

extract the value of three attributes as the unique identifier of

it, i.e., resource-id, class, package. We then concatenate these

three attribute values and use the MD5 hash algorithm [16] to

generate a hash value for the component. If the type of the

current node is an adapter view, we will use the information

of the view it is really bound to generate the identifier for it.

After obtaining the hashed values for all the components, we

concatenate them in sequence and use the same hash algorithm

to generate a unique identifier for the UI page.

Note that, since the detailed contents in adapter views

(e.g., ListView or RecyclerView) at runtime are unknown

and these adapter views are essentially just repetitive views

being populated according to the ListApdapter [17] . While

SceneDroid focuses on the structure of the views obtained

from the ListApdapter, it only needs to fetch the first view

in the adapter view to learn the structure of the other ones.

Only the first child view of adapter views counts for scene

identification.

C. SceneTG Construction

To reflect the overall UI states of an app in the runtime,

we construct the based on the identified scenes and their

transitions during dynamic exploration (as shown in Fig. 5).

We highlight that apart from the scene transitions, SceneDroid

also can provide the corresponding real UI page for each

identified scene. The SceneTG attached with real UI pages

indeed aids users in understanding the apps. SceneTG’s fine-

grained UI model can be used to contribute to improving the

performance of existing work including UI testing, regression

testing, competitive product analysis, etc.

IV. EFFECTIVENESS EVALUATION

To evaluate the effectiveness of SceneDroid, we aim to

conduct the experiments by answering the following research

questions.

• RQ1: Can SceneDroid accurately recognize new scenes that

contain different types of new UI views?

• RQ2: Can SceneDroid outperform existing UI exploration

tools in terms of transition relation extraction and scene

exploration?

TABLE I: Ten self-developed benchmark apps with different

features, activities, transition pairs, and scenes.

ID Feature #All Acts #Pairs #Scenes
1 Basic Act + Fragment +

Dialog + Switch Button
8 23 17

2 Basic Act + Menu 8 18 15
3 Navi. Drawer Act + Frag-

ment
9 24 22

4 Navi. Drawer Act + Frag-
ment + Menu

8 21 19

5 Bottom Navi. Act 8 13 13
6 Bottom Navi. Act + Menu 3 19 19
7 Bottom Navi. Act + Frag-

ment + EditText
3 15 14

8 Tabbed Act + Menu +
Spinner + Picker.

6 14 11

9 Tabbed Act + Bottom
Navi. Act + Menu + Float-
ing Action Button

3 16 11

10 Navi. Drawer Act + Frag-
ment

1 6 9

• RQ3: How much do the different strategies of SceneDroid

contribute to enhance UI exploration?

A. RQ1: Scene identification

1) Setup: To investigate whether SceneDroid can effec-

tively identify different types of scenes in the apps, we self-

developed 10 apps as our ground-truth benchmark, covering

different types of views for UI pages including Drawer, Menu,

Dialog, Spinner, Picker, etc. In order to make the benchmark

apps more representative of real-world apps, we also add

more features and complexity to them with different numbers

of activities. Since Android Studio provides numerous code

templates that follow the best practice of Android app design

and development, to develop apps that are compliant with the

latest Material Design principles and reflect the latest Android

app features, we utilize the templates provided by Android

Studio to create new application modules, various activities,

or other specific Android project components. Some templates

provide initial code for typical environments, such as drawer

navigation bars or login pages, which reflect the latest Android

app features. As shown in Table 1, the 10 apps we develop

consist of many features, varying the number of activities

with multiple types of scenes. Moreover, they are implemented

with different transitions from Activity to Activity, Activity to

Fragment, Fragment to Activity, and Fragment to Fragment,

as the rich transition logic that is inserted into the apps.

Based on the dataset above, we conducted the experiment

to evaluate the effectiveness of SceneDroid in scene identifi-

cation. To validate the accuracy of SceneDroid, we need to

determine the number of activities, scenarios, and transition

relations for each program. We use the number of activities

declared in the AndroidManifest.xml file as the basis and

manually validate the number of scenes and transition pairs

identified by SceneDroid for each app. We set a timeout of 15

minutes for the analysis phase and 30 minutes for the dynamic

analysis for each app in the dataset.

1256

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on October 09,2025 at 06:12:47 UTC from IEEE Xplore.  Restrictions apply. 



2) Result: The result indicates that SceneDroid can ex-

tract all the activities, scenes, and transition pairs in the 10

benchmark apps, shown in Table I. SceneDroid performed

well not only on simple apps composed of activities and

fragments but also on complex apps, as displayed in app

4 and app 9. These complex combinations of features are

frequently used in industrial environments. In the following

RQ2, we will show in detail the strengths and weaknesses

of SceneDroid compared to others, especially in apps with

complex components. The reason for achieving such excellent

results is that SceneDroid leveraged a combination of three

smart strategies. These strategies are not used in isolation or

stacked repeatedly; rather, the organic combination achieves

good results. In the following RQ3, we will conduct an

ablation study to comprehensively evaluate the impact of each

strategy on the tool’s exploration capability. The SceneTG

constructed by SceneDroid can indeed build a more fine-

grained UI model. We also manually verified the reachability

of all the paths explored by SceneDroid, and all of them are

feasible in the 10 benchmark apps.

Answer to RQ1: The experimental results show that

SceneDroid can extract all activities, scenarios, and tran-

sition pairs in the 10 ground-truth benchmark apps. Scene-

Droid can accurately recognize new scenes that contain

different types of new UI views.

B. RQ2: Scene exploration

1) Setup: To evaluate the capability of SceneDroid in

scene exploration, we randomly downloaded 50 closed-source

apps from Google Play Store [18] and 50 open-source apps

from F-Droid [19] as the evaluation subject to investigate the

effectiveness of SceneDroid in real-world apps. Based on the

dataset, we compared SceneDroid with four state-of-the-art UI

modeling tools: GoalExplorer [4], Gator [20], StoryDistiller

[5], and ICCBot [15]. We chose them as the baseline tools

because they either have similar goals (StoryDistiller) to

SceneDroid or have similar transition results (GoalExplorer,

Gator, ICCBot). Specifically, StoryDistiller utilizes a combi-

nation of dynamic and static methods to build the UI model of

the app, which is with a similar goal to ours but with coarse-

grained modeling. The other three tools are state-of-the-art

tools that generate transition graphs. GoalExplorer proposes a

static parsing approach to build the Screen Transition Graph

(STG). Note that, in the experiment, we used the latest released

version of GoalExplorer [21] since the initial open-source

version on Github is unavailable to compile and use due to

missing essential dependencies. Gator is also a mature static

analysis suite for Android apps that can be used to build the

Window Transition Graph (WTG). ICCBot is demonstrated as

the state-of-the-art ICC resolution tool [8].

We separately run these tools on the 100 apps and set a

timeout of 15 minutes for each app in the static analysis

phase, because, for some closed-source applications, some

static analysis tools can be time-consuming due to internal

errors. For the evaluation metrics, we use the number of

explored activities, the number of explored scenes, and the

Fig. 6: Comparison of #Explored activities, #Transition pairs,

#Scenes.

number of UI transition pairs to evaluate the performance of

each tool. Since ICCBot generates ICC relation of the four

major components of Android (i.e., Activity, Service, Content

Provider, and Broadcast Receiver), while SceneDroid focuses

on the UI model construction. To make a fair comparison, we

thus only consider the components related to UIs from the

result file, i.e., activity and fragment. As for the number of

transitions of ICCBot, we focus on four types of transitions:

Activity to Activity, Activity to Fragment, Fragment to Activ-

ity, and Fragment to Fragment.

2) Result: The comparison result of these tools is shown

in Fig. 6. We can see SceneDroid outperforms the other four

tools in all metrics. On average, SceneDroid extracts 30.25

transition pairs (0.81 in GoalExplorer, 13.52 in ICCBot, 12.03

in StoryDistiller, 18.68 in Gator, respectively), and in terms

of the identified scenes, SceneDroid achieves 22.93, which

is twice of most other tools (1.63 in GoalExplorer, 9.53 in

ICCBot, 13.83 in StoryDistiller, 9.95 in Gator, respectively).

The reason for SceneDroid’s superior results is that

SceneDroid introduces smart exploration, which is used to

obtain the scenes during dynamic exploration, thus enabling

the launch of activities even without using ICC messages.

It alleviates the limitations of existing tools that rely on the

accuracy of ICC message extraction, effectively enhancing the

activity coverage of SceneDroid during the dynamic process.

Smart Exploration also introduces the indirect launching phase

for failure activities, which helps SceneDroid to explore as

many different scenes on an activity as possible. Moreover,

fuzzing for EditText, CheckBox, Switch Button, etc., is an

exclusive feature that enables SceneDroid to interact with more

components than other tools.

While StoryDistiller also adopted the idea of combining

static and dynamic exploration to build UI models with UI

screenshots, it does not perform well because (1) StoryDistiller

works with activity as a granularity. While it also tries to

trigger each interactive component presented in the activity,

it will only go to explore the ones that start the initial activity.

Besides, it ignores the possibility of triggering components

that will access a scene such as Fragment or Menu, where

the newly emerging interactive components may trigger new
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(a)  My Garden Page (b)  Plant List Page (c)  Avocado Page

Fig. 7: Example transition between Tabbed navigation UI.

scenes and new transition relations. (2) StoryDistiller relies

on ICC messages to launch the activity and cannot be as-

sisted through the transition pairs obtained by the dynamic

exploration process; (3) StoryDistiller does not use fuzzing to

increase interactions.

As the static analysis methods ignore many of the transition

relations brought about by the presence of special components

in the new view during analysis. Some components that can

trigger the new scene exist in some new views (e.g., Nav-

igation, Snackbar, and BubbleMetaData), while these static

methods do not resolve the views, preventing them from

triggering the new scene. For example, none of the existing

tools properly handle the transition pairs initiated by the

Navigation components or navigated using Tabbed Navigation

UIs, as shown in Fig. 7. Another example is in Fig. 5, they

fail to properly analyze the transition pairs from the Naviga-

tion Drawer to the GallerFragment, SlideshowFragment, and

Fragment2. Navigation is the interaction that allows users to

navigate across, into, or back out from different content blocks

in an app [17], which is introduced in Android 3.3.

For StoryDistiller, it is based on the grain of activity,

and discovering scenes containing Navigation components is

beyond the capability of StoryDistiller. For ICCBot (which

claims to be able to model Fragments) and GoalExplorer

(which is optimized explicitly for Drawer) also fail to correctly

discover the transition pairs generated by the Navigation com-

ponent. This is because the API modeling of these tools failed

to keep pace with Android evolution, and neither of them

correctly modeled Navigation’s API introduced in Android 3.3.

Specifically, in the Fragment-Aware Transition and Extraction

phases, both of ICCBot and GoalExplorer only captured the

APIs commonly used by FragmentManager. For example,

when identifying the addition of a fragment, the APIs such

as add(Fragment, String) are captured, while Goal-

Explorer only models the DrawerLayout.openDrawer
API when dealing with the component Drawer. However, the

APIs used for jumping between fragments in the Navigation

component are Navigation.navigate(actionID) and

Navigation.navigateUp(). Therefore, they both fail to

handle scenes and transition pairs based on the Navigation

component properly.

Indirect LaunchState Fuzzing

Fig. 8: Contribution of each strategy.

Answer to RQ2: SceneDroid extracts 30.25 transition

pairs and 22.93 scenes on average, which significantly

outperforms the existing tools (i.e., 1.63 in GoalExplorer,

9.53 in ICCBot, 13.83 in StoryDistiller, and 9.95 in Gator)

in terms of scene exploration on our collected 100 apps.

C. RQ3: Ablation study on different strategies

1) Setup: To evaluate the contribution of different strategies

(i.e., State Fuzzing, Scene Identification, and Indirect Launch

strategy) in SceneDroid for improving UI exploration, in this

RQ, we conducted an ablation study. Specifically, we tested

with a modified SceneDroid based on the dataset in RQ2,

which can disable a particular strategy alone and we can

separately evaluate the three strategies. We ran SceneDroid

with different strategies disabled for each of the 100 apps and

set a 15-minute runtime limit for each app during the analysis

phase, the same setup as that in RQ2. Given that it may get into

a duplicate state when some strategies are disabled, leading to

extra time consumption, we also set a time limit of 30 minutes

during the dynamic run phase. We evaluate the effectiveness

of each strategy based on the number of explored activities,

scenes, and UI transition pairs.

2) Result: The results of the ablation study are displayed

in Fig. 8. The Indirect Launching strategy has the most impact

on the test results of the tool, followed by the Scene Identi-

fication strategy. Specifically, in terms of activity exploration

capability: the Indirect Launching strategy achieved an average

improvement of 15.59% vs. 7.70% in the Scene Identification

strategy and 4.76% in the State Fuzzing. Regarding the ability

to explore Scenes, the Indirect Launching strategy provides an

average 47.02% improvement vs. 21.72% in the Scene Identi-

fication strategy and 3,43% in the State Fuzzing. The Indirect

Launching strategy provided an average 35.08% increase in

the extraction of transition pairs. In comparison, the Scene

Identification strategy provided an average of 19.86% increase,

and State Fuzzing provided an average of 7.89% increase.

From the results, we can see that the Indirect Launching
strategy contributes the most to the exploration capability of

SceneDroid. The possible reason is that, since Activity is the

carrier for all scenes and transition pairs, once SceneDroid is

able to explore a new Activity that cannot be directly launched

before, it would also explore a lot of new scenes and transition
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(c) update on the nested Menu(b) update on the Spinner

(a) update on the Navigation Drawer

 (STG format)

dcb15...e26ec
Identifier:

ae962...c7e50
 Identifier:

MainActivity MainActivity

Fig. 9: Fine-grained scene difference identification.

relations. It would be a practical strategy when the current

static analysis techniques cannot fully construct the required

context for launching activities correctly.

For the Scene Identification strategy, it brings a relative

improvement to the scene exploration capability, proving that

introducing the Scene Identification strategy is a justified

choice. During the experiments, we found that disabling the

Scene Identification strategy made it susceptible to repetitive

scene exploration, which resulted in insufficient data. Once

the tool gets stuck in repeated scene exploration, it is unable

to exit automatically and thus fails to explore the whole

application in a limited time. As in the case of the Scene

Identification strategy described in the Approach section, apps

like Simple Draw Pro get stuck because they cannot identify

subtle scene differences. From the experimental results, with

the Scene Identification strategy disabled, the tool was able to

explore only seven different scenes. It was stuck in a repetitive

exploration of the palette scenes. The introduction of the Scene

Identification strategy proved to be feasible.

As for the State Fuzzing strategy, the boost is primarily

because many apps contain UI components that users can

interact with but do not directly cause scene transitions,

including EditText, CheckBox, Switch Button, etc. However,

these types of components can change the execution path

of the application, making it possible to explore more new

states and scenarios. In particular, many apps have scenes that

require account passwords or search boxes, which may limit

the exploration of scenes if not populated with appropriate data

in the EditText component. Although the current State Fuzzing

strategy improves the whole exploration, the improvement is

relatively small, because some apps require legitimate input

(e.g., specific account numbers and passwords) to be provided.

Answer to RQ3: The Indirect Launching strategy has

made the most significant contribution, with an average

improvement of 15.59%, 47.02%, and 35.08% in terms

of activity exploration, scene exploration, and transition

pairs extraction, respectively. The improvement is at least

twice as effective as the Scene Identification strategy (7.7%,

21.72%, 19.86%) and State Fuzzing strategy (4.76%,

3.43%, 7.89%).

V. FUTURE APPLICATIONS AND DISCUSSION

A. Future Applications

In this paper, we conduct fundamental work in UI explo-

ration and fine-grained scene modeling, which can facilitate

several follow-up research such as regression testing, and GUI

testing for Android apps.

1) Regression testing: One of the meaningful areas of

Android app testing is regression testing, as regression testing

aids agile development in building quality apps. Moreover,

related work shows that reusing test samples contribute to the

efficiency of Android regression testing [22]–[24]. Through

experiments, we have demonstrated that SceneDroid bene-

fits from the high-precision UI model it builds and enables

effective detection of modification scenes and components

occurring in different app versions. By leveraging SceneDroid,

developers can focus more on testing the changed or added

components or scenes, avoiding keeping testing on the previ-

ous functions. Besides, with the help of SceneDroid, develop-

ers can write targeted test cases manually or using automated

tools depending on the testing report. Goal-driven test case

writing reduces the redundancy of testing and significantly

saves the time required for testing.

We also conducted a pilot study to investigate whether

SceneDroid is capable of identifying fine-grained UI changes

between different versions of the same app. Specifically,

we randomly selected 30 apps in the dataset of RQ2 and

collected the three latest minor versions [25] of each app as

the evaluation subject. As for UI changes (i.e., updates), we

abstract the following two cases as updates: one is adding

or deleting scenes, and the other is modifying components

within the scene. We identify the UI changes by comparing

the component tree of the two scenes (with the same execution

path) of the two versions, SceneDroid checks layer by layer

whether any nodes have been added or deleted or the properties

of the old nodes have been changed. Based on the dataset

and the update localization method, we aim to investigate the

number of scenes and transitions updated in the newer versions

that are identified by SceneDroid.

As a result, SceneDroid found 135 updates of scenes and

284 updates of transition pairs in 60 adjacent version itera-

tions of 30 apps. On average, each version update introduces

1.50 scene variations and 3.20 variations of transition pairs,
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indicating that scene updates are relatively frequent during

app evolution. Take the app V2Ray [26] as an example,

which is a Material-Design-compliant web proxy application.

We first discover an update of the NavigationV iew on the

DrawerLayout. As shown in Fig. 9, from version 1.4.0 to

1.5.0 of the app, V2Ray was updated to support the custom

functional modules (i.e., Geoip and Geosite). This feature up-

date visually reflects the difference in scene, with a new entry

for “Geo asset files” in NavigationV iew. The identifier of

this scene is also changed from “ae96...7e50” to “dcb1...26ec“,

which can also be found visually in the SceneTG (Fig. 9(a)).

SceneDroid then applies the location algorithm mentioned

above to find an additional node in the tree with a resource-id

of “com.v2ray.ang:id/user asset setting”, thus pinpointing the

range affected by the update.

In addition to the updated case of NavigationView on

DrawerLayout, we also found an updated case on Spinner in

V2Ray. As shown in Fig. 9(b), the new version of V2Ray adds

support for various forms of encryption, including “chacha20”

and “aes-256-gcm”, an update option that would be ignored if

it were a traditional ATG or STG constructed by GoalExplorer.

On the other hand, the SceneTG defined by SceneDroid detects

this granularity update very well. SceneDroid can also find the

updated scene on Menu. This Menu update case is unusual

because it happens on a nested Menu (as shown in Fig.

9(c)). Version 1.3 added support for the VLESS protocol

compared to version 1.2, so there is a new entry point on

the Menu imported by the protocol. SceneDroid observes the

scene update on this first Menu; however, it can be seen that

there is also a custom configuration option. Clicking on this

custom configuration option, SceneDroid finds a second Menu,

adding in version 1.3 the ability to restart all services, which

needs to be triggered in the second nested Menu. This UI

update could not be found if only the general activity or

activity to Menu level granularity was created. Due to the fine

granularity of the scene and the exhaustive exploration strategy

introduced by SceneDroid, UI updates in the nested Menu can

be discovered accurately. SceneDroid can identify the fine-

grained UI changes based on graphs of SceneTG between

multiple versions of the same app.

2) Android UI testing: Prior research has shown that even

with the current state-of-the-art Android GUI testing kits,

the activity coverage is still not high [9]–[11], [27]–[29].

We believe SceneDroid primarily contributes to improving

the existing Android GUI testing efforts in the following

two aspects. (1) The indirect launch strategy for activities

proposed by SceneDroid could help the existing tools no

longer rely solely on the correctness of the constructed context

for activity launching, especially for activities that fail to be

launched with the current context information. It facilitates

the existing testing tools to launch more activities and may

finally achieve improvement in the coverage criterion (e.g.,

activity/method/code coverage). (2) Existing Android GUI

test suites usually apply random or modeled strategies. The

success of AFL [30] in the binary domain has shown that

coverage-based evolutionary algorithms have great potential.

Note that activity-based coverage metrics are too coarse from

some specific perspectives, for example, there are many scenes

that are bound to a single activity, covering the activity does

not mean covering all the functionalities in the activity. The

fine-grained UI model generated by SceneDroid is helpful in

building a scene-based coverage metric. In that case, this more

refined metric may motivate the usage and improvement of

evolutionary algorithms in Android GUI testing.

B. Limitations

Limitations of SceneDroid come from two aspects. (1) Fail-

ure in launching some activities. Despite our proposed smart

exploration strategy, some activities still fail to be launched

for various reasons, such as the presence of some activities

that require authentication (e.g., login), inconsistent activity

declarations between the AndroidManifest.xml file and the

implementation code, and limited interaction types. We con-

sider SceneDroid could be improved by upgrading the types of

components that can be interacted with and by injecting some

random system-level events. For indirect launching failure,

which may be due to the change of component information

during testing, we can design a more reasonable way to record

the path of indirect launching for SceneDroid. (2) Poor support

for non-Native apps. Currently, SceneDroid and most Android

GUI testing tools are still for Android native apps [31]–

[33]; however, HTML5 technology [34] and cross-platform

development framework have become mainstream in industry

[34]–[36], such as React Native [37], Weex [38], Kotlin Native

[39], Flutter [40], etc., among which Flutter is a cross-platform

mobile UI framework strongly supported by Google. In the

future, we could work on improving SceneDroid’s support for

non-native apps.

VI. RELATED WORK

A. GUI exploration

GUI exploration is an important way of app abstraction

and GUI modeling [1]–[5]. In general, existing work can be

divided into two categories according to different goals of GUI

exploration.

1) GUI exploration for UI modeling: As Android apps are

event-driven and composed of activities for user interaction,

Activity Transition Graph (ATG) [2] or Window Transition

Graph (WTG) [3] is typically used to model the user interface

for Android apps. Note that, the extraction has been investi-

gated by both static and dynamic methods. For example, Yang

et al. [3] proposed Gator for extracting WTG based on the

stack of currently-active windows. The results include the pos-

sible GUI window sequences and their associated events and

callbacks. Chen et al. [1] introduced StoryDroid for statically

generating storyboards for Android apps by extracting ATGs

along with statically rendered UI pages. StoryDroid combines

the results provided by IC3 [41] and ATGs extracted with

Fragment and inner class features.

The most related works are GoalExplorer [4] and Sto-

ryDistiller [5]. Specifically, Lai et al. [4] proposed Goal-

Explorer, which statically models the UI screens and their
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transitions between these screens. Apart from the original ATG

and WTG, GoalExplorer further extends the static model by

adding fragments, drawers, service, and broadcast receivers.

Different from this tool, we handle more features of the UI

screen through a smart dynamic exploration instead of a static

method. StoryDistiller [5] is an extension of StoryDroid [1],

which optimizes the original tool on ATG construction and

UI page rendering by combining the original static method

and novel dynamic exploration. The strategy of their dynamic

exploration is to traverse all clickable components of each UI

page that can be launched directly. The goal of dynamic explo-

ration is to obtain new activity transitions that are not parsed in

the static method. Compared with StoryDistiller, SceneDroid

aims to explore more scenes and scene transitions to construct

SceneTG by handling more features such as fragment, drawer,

menu, and dialog instead of ATG construction, which is more

fine-grained for app UI modeling.

2) GUI exploration for app testing: In the past decade,

Android app GUI testing approaches have evolved rapidly,

and many testing tools such as Monkey [42], Dynodroid [43],

Ripper [44], A3E [2], Sapienz [45], Droidbot [46], Stoat [47],

APEChecker [7], Ape [48], Humanoid [49], Fax [14], and

PSDroid [50] have been proposed to explore apps and detect

bugs or security bugs ( [51]–[53]). Since the goal of these tools

is to detect more bugs when dynamically testing the apps, the

UI transitions are usually incomplete due to the limitation of

low activity coverage and test case generation [1], [5].

There are two strategies used in app testing that are related

to our work. On the one hand, some of them first generated

the ATG statically and then conducted dynamic testing based

on it. For example, A3E [2] constructed the ATG by static

analysis and leveraged it to guide the dynamic test input

generation for app testing. However, many existing works

unveiled the statically constructed ATG neglects many activity

transitions due to the limitations of static program analysis

techniques [1], [15]. On the other hand, some work focused

on dynamic exploration for app testing and after testing,

they also provided the UI transition based on the dynamic

exploration. For example, Li et al. [46] proposed DroidBot,

a lightweight UI-guided Android test input generator. Apart

from the testing results such as test input and identified bugs,

DroidBot also generates ATGs for users. Pure dynamic testing

has limited activity coverage, significantly restricting ATG

completeness. Moreover, the adopted content-based compar-

ison method could produce redundant and duplicate states.

B. ICC resolution

Researchers have proposed a large number of tools for ICC

resolution such as Epicc [54], IC3 [41], IC3DIALDroid [55],

RAICC [56], ICCBot [15]. Many works that apply the ICC

results have been exhibited for various purposes. In fact, the

ICC results also can be used to improve the capability of UI

modeling. Yan et al. [15] conducted a comprehensive study

to evaluate the ICC resolution techniques. According to the

results in this paper, we choose ICCBot as a comparison

subject to demonstrate the effectiveness of SceneDroid. Com-

pared with the existing ICC resolution, (1) SceneDroid can

generate a more complete ATG and SceneTG through both

static and dynamic methods. (2) The corresponding UI page

of each scene is also provided for users instead of only a graph

structure of the UI transitions.

VII. CONCLUSION

In this paper, we proposed SceneDroid, which extracts GUI

scenes dynamically by combining three strategies. We present

the GUI scenes as a scene transition graph (SceneTG) to

model the GUI of Android apps with high transition coverage

and fine-grained granularity. Our empirical evaluation has

proved the effectiveness and usefulness of SceneDroid. The

constructed high-precision model can effectively identify UI

updates between different app versions and facilitate devel-

opers to design automated regression testing tools and help

develop future UI fuzzing testing tools, providing them with

effective coverage information.
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